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Abstract. Composite materials are used in manufacturing a vast game of products, from usual objects, 

medical devices, aerospatial parts to military equipment. One of the features considered when a composite 

material is designed as target aims the energy dissipation with respect to the projectile. The paper presents an 

improved alternative of a model which is broadly used in the impact of projectile and composite target. The 

initial model has the weakness that does not present the hysteresis loop. The improvement of the model 

consists in including a nonlinear damper placed between the projectile and the target, the damping force being 

simultaneously proportional to the impact velocity and the elastic force. The new model has a hysteresis loop 

closed in the origin. The proposed model is applied for concrete situations and the results are presented in 

graphical manner. 

1 Introduction  

Composite materials are widely used in developing the 

products met in everyday life [1] but also in specialized 

domains, like medical devices [2-5], military equipment 

or wind electric systems [6]. Theoretically they can be 

designed for achieving preferred characteristics but as 

Abrate highlights [7-10] the domain of application is 

narrowed by the impact behavior. The numerous papers 

dedicated lately to this matter prove the increasing 

attention produced by this subject.  

 A number of papers study the impact at low 

velocities and the impact strength. Abrate [11] underlines 

that a first step in understanding the effect consist in the 

development of a model capable to allow the prediction 

of time evolution of the impact force and of the reaction 

of the structure. The analysis of impact behavior 

emphasizes that any impact model is situated between two 

limit situations: the first case, when the entire energy of 

the projectile is transferred to the target, and small 

deformations are produced that finally lead to crack micro 

initiators; the second case, when the composite, due to its 

properties, returns the entire impact energy to the 

projectile. A typical case for the situations mentioned 

above are the rotor blades of the wind turbines made of 

composite materials, Mishnaevsky [12]. A recent paper 

due to Gaudern [13] proofs the destructive effect 

produced by the erosion upon the rotor blades of the wind 

turbine. The statement is demonstrated with probes 

obtained in wind tunnels. To be remarked that the leading 

edge is the most affected region of the rotor blade. As 

known, the wind turbine farms must be placed in regions 

where minimum impact upon the environment is 

produced. Onshore, it is expected to view wind turbines 

working quite remote from popular areas, even in 

agricultural lands or in desert regions. A characteristic of 

these regions is the presence of dust particles that will be 

swept up into motion by the large air masses with 

velocities up to sec/m13 , [14] and thus becoming actual 

micro-projectiles on the surface of the turbine. The 

mentioned facts are good reasons for the conception of 

models capable to estimate the impact force and lastly to 

allow for optimum design of rotor blades of wind turbines.  

2 The Abrate spring-mass models for 
the impact of composite structures 

Abrate makes a comprehensive review [11] concerning 

the representations that study the projectile–composite 

material impact and identifies several models. 

 

Fig. 1. The spring-mass model studied by Abrate [11] 
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Among these the spring-mass models are present. 

These models have the advantage of being simple and 

offering precise solutions for certain impact types, 

frequently met during the tests where small projectiles are 

used. 

A two degree of freedom model is presented in [11] 

and consists in a deformable structure (2) collided by a 

projectile of small dimensions (1), as presented in Fig. 1.  

The system is modeled using two masses and three 

springs. The equations describing the motion of the 

system are: 
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(1) 

where 1M  is the mass of the projectile, bsK  is the elastic 

constant of the structure with linear behaviour, mK  is the 

elastic constant corresponding the the nonlinear behaviour 

of the structure. In equation 1 P  is the impact force 

between the structure and the projectile, expressed as a 

strongly nonlinear dependency on the deformation 

12 xx  .  

Next it is assumed that the impact force P  presents a 

Hertzian form. Thus, for the case of centric impact of two 

spheres, the impact force has the expression:   
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(3) 

where 2,1R  are the radii of curvature of the contacting 

bodies and   is the contact stiffness, defined according to 

Johnson [15] as:        
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In the above relation, 12  and 2,1E  are the Poisson 

coefficients and the Young moduli, respectively, of the 

two materials. Next it is considered the impact between a 

ball-projectile and plane membrane-target. For a complete 

clamped isotropous circular membrane, the coefficients 

mK  and bK  are expressed by the relations:    

22b
a)1(3

Eh4
K






  

 

(5a) 

22m
a)1(648

Eh)191353(
K








  

 

(5b) 

where h  is the thickness and a  is the radius of the 

membrane, [16]. To be mentioned that the effective mass 

of the membrane taking part to the oscillation motion is a 

quarter of the total mass of it. The equations 1 considered 

together form a system of nonlinear differential equations 

,[17] and solving it requires applying a numerical 

procedure, [18]. The initial conditions are necessary in 

order to integrate the system and in the present case they 

are: 
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The next concrete situation was considered for 

integrating the system:  
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Both the ball and the membrane are made of steel and 

have the elastic modulus Pa101.2E 11
2,1  . The 

Runge-Kutta IV method, [18] was applied for integrating 

the system of equations 1.  

The absolute displacements of the projectile 1x , of the 

center of the membrane 2x  and the relative displacement 

of the projectile with respect to the membrane are 

presented in Fig. 2.   

 

Fig. 2. Absolute deformations of the ball 1x , of the membrane 

2x , and the relative deformation ( 21 xx  )    

 

From Fig. 2 it is noticed that at a certain instant, the 

deformation of the membrane equals the deformation of 

the ball.  

The deformations from Fig. 2 are represented for a 

longer period in Fig. 3. It can be remarked that both the 

projectile and the membrane get an oscillatory motion as 

a result of at least two harmonics and therefore, the 

relative displacement of the projectile with respect to the 

target is a quasi sinusoidal oscillation. 



 

The plot force-relative deformation of the projectile 

presented in Fig. 4 is of particular attention. 

 

Fig. 3. Absolute deformations (of the ball 1x , of the membrane 

2x ) and relative deformation ( 21 xx  ) for longer time  

 

Fig. 4. Force-relative deformation curve for the projectile 
 

From Fig. 4 it can be concluded that the system of 

differential equation 1 describe the behavior of an un-

damped system since for a damped action, a closed force-

deformation curve entrapping an area equal to the work of 

damping should occur.  

The fact that the model of a composite material 

exhibits un-damped behaviour is a major deficiency of the 

representation.  

3 Proposal of improved model  

In order to improve the model proposed by Abrate, a 

viscous dashpot (damper) is attached to the model, 

connected in parallel to the spring between the projectile 

and the membrane. As it can be observed form Fig. 5, the 

damping constant was considered variable.  

This requirement was applied by Lankarani and 

Nikravesh [19], and Flores et al. [20]; for modeling an 

impact phenomenon with viscous damping, they establish 

the model based on the remark made by Hunt and 

Crossley [21], who showed that when the viscous 

damping depends only on the relative velocity the 

hysteresis loop is open in origin, this meaning that at the 

end of the impact, the two bodies attract to each other 

instead of rejecting.  

Based on the observations made by Dubowsky and 

Freudenstein [22-23], Hunt and Crossley [21] showed that 

for obtaining a loop closed in origin it is necessary that the 

damping force should be proportional both to relative 

velocity and to the contact force exerted when no damping 

is present.  

 

 

Fig. 5. Proposed model with damper 
 

Founded on this remark, a modified equation of 

motion, that considers the damping occurring in the ball-

composite contact, is proposed under the following form: 
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In the relations 8, the parameter   is the characteristic 

of damping and 2/3  is the exponent typical to the 

Hertzian contact [24-27]. 

The system of differential equations 8 was integrated 

numerically for the parameters 7 and for the same initial 

conditions 6, for two values of the   constant, that is: 
910 , 9103   (units 

1N s / m  ).  

For thes3e two values of the  constant, there are 

presented comparatively:  

 the absolute displacements of the projectile and 

target and the relative displacement, in Fig. 6; 

 the impact forces versus time in Fig. 7; 

 the hysteresis loops in Fig. 8. 

 

 

1M  

sK  

bK  

mK  

2x  

1x  

2M  

k  
1aF  



 

*
 Corresponding author: florina@fim.usv.ro 

 

 
 

Fig. 6. Displacements of the projectile and target 

 

      

Fig. 7. Impact force variation versus time 

 

     

Fig. 8. Hysteresis loops 
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Fig. 9. Phase diagram for different damping values  

 

A very useful instrument in dynamical analysis of 

comportment of a system is the phase diagram. In Fig. 9, 

for the model from Fig. 5, the phase diagrams 

corresponding for four value of damping are shown. 

 
Fig. 10. Phase diagram for critical damping  

It can be observed that for lower damping there is only 

an asymptotic point, while for higher damping values 

there are two asymptotic points. That means that there is 

a critical value of damping which splits the two aspects. 

In Fig. 10 it is presented the phase diagram for critical 

damping of the system from Fig. 5. 

A number of important conclusions result from Figs. 

6-8: 

1. The proposed model demonstrates damping with the 

hysteresis loop closing in origin. 

2. The damping work is more important in the 

approaching phase than during the detaching phase. 

3. The effect of increasing the damping is a slight increase 

of the time when the displacements of the projectile and 

target are equal. 

4. The area of the hysteresis loop increases significantly 

when the damping augments. 

5. It is observed that the maximum impact force is not in 

phase with the minimum relative displacement. When the 

maximum impact force is attained, the minimum relative 

displacement is delayed with respect to this moment.  



 

5. Exaggerate augmentation of damping may lead to the 

increase of maximum impact force.  

6. There is an optimum value of damping to which a 

minimum value of the maximum impact force 

corresponds.  

7. In the phase diagram, the characteristic point describes 

a selfintersecting path, occurring the possibility that, for 

higher damping, two asymptotic points exist as indication 

of bifurcation phenomenon.  

Conclusions  

The present paper aims to provide a model for the impact 

between the sand or dust particles and the surface of the 

rotor blade of a wind turbine made of composite material. 

The analysis starts from a model for the impact of 

composites, broadly applied, and it is highlighted the 

advantage of this model - the fact that the impact force 

presents a nonlinear variation, but also the weak point - 

namely the lack of energy dissipation, phenomenon 

viewed as a fundamental requirement for composite 

materials. An improved variant of the existent model is 

proposed in the present work consisting in introducing a 

nonlinear viscous damper between the projectile and the 

target made of composite material. Based on recent 

papers, the damping force is assumed simultaneously 

proportional to the velocity and to the elastic force. In this 

manner, the hysteresis loop closed in origin is ensured. 

The equation of the model is integrated for a few 

particular cases and the results are presented in graphical 

form.  
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